

11 May 2015 Version 1.0

1

Box Variables (In Python):
Understanding Variables and Assignment

Paul Curzon and Nicola Plant
Queen Mary University of London

Variables and assignment are important early concepts to
understand when learning to program. Without a good
understanding of them you will struggle to move on and
master more advanced concepts. They are easy to
misunderstand, however. If you realise it is a problem it is
also easy to fix. It boils down to realising variables are like
storage boxes with built in photocopiers and shredders.

Whether it is to fly a plane or play a game, one of the most important things
computers do is process data. They store values – numbers, text, images,
sounds – manipulate them, do calculations with them, make changes to them
and store the results until they are needed. For example, music editing
software might be used to record samples of sounds, edit them, combine
them with others, store the results and then play the final version. A texting or
tweeting program stores the words you type, allowing you to edit them until
you are ready to send the message.
For a computer program to process data it must have a way to store it, and
that is where variables come in. They are just storage places. To process
information you also need a way to move it from one place to another. That is
what assignment is for. To be able to program you must understand both,
and it turns out it is easy to get confused about the details of how they work
without realising you don’t understand. Get over this hurdle, understand it
well, and programming becomes far easier.
So what is a variable? A good way to think of variables is that they are just
like storage boxes. You can store information there and later retrieve it. The
twist is that they are special storage boxes. They are storage boxes with their
own private shredder and
photocopier built in.
Variables are boxes that
can store, but also create
and destroy, information.
Let’s look at a fragment of a program to see how it all works. Don’t worry if
you don’t understand it yet. We will go through each part in turn in the next
sections.

Variables are boxes that can store,
but also create and destroy

11 May 2015 Version 1.0

2

colour1 = “red”
colour2 = “green”

temp = colour1
colour1 = colour2
colour2 = temp

This program has three variables – three different places to store data –
called colour1, colour2 and temp.

Creating variables: finding a new box
To use variables as storage in a program we first need to create the variables
in the first place. Different languages do this in different ways. In many
languages you must write instructions in your programs to explicitly tell the
computer to create a variable before it is needed. In Python they are created
the first time you mention a new one i.e., when you use its name for the first
time. Mentioning a new variable has the effect of giving the computer an
instruction to go and find a
storage box that isn’t being used
for anything else. When a
program creates a variable, it is
picking a new place in its memory
to store data. Each variable you
create can hold a single value. Here is an example from the first line of our
program.

colour1 = “red”
colour1 hasn’t been mentioned before this point in the program so the
computer takes that as an instruction to create a variable with that name. This
command therefore first of all creates a new storage box called colour1.

That is just the start though. The command then goes on to say put something
in the storage box: in this case the word “red”. To a computer a word like
“red” is a just a series of characters to be stored one after another – it is
called a string of characters. We get something like this with “red” stored in
the box called colour1:

 colour1

Creating a variable creates a
new storage box

“red”

colour1

11 May 2015 Version 1.0

3

Once a variable is given a name, that name cannot then be changed. For as
long as the box exists that will be its name. Let’s look in more detail at the
names and the things they can hold in turn.

Identifiers: the names of boxes
The name we have given the first variable in our program is colour1. That is
its identifier (the word programmers use for the names of things). Each
variable is given its own
identifier – each box has
a name – so that we can
use it to identify a
particular variable later
in the program when we want to put some information in it or get some
information out again. Most programs use lots of variables as they need to
store lots of different information. All those variables need their own identifiers
so the computer knows which one we mean. Ideally the identifiers we use
should tell us something about what is stored in them to help us remember
which is which. In this case its name suggests it will be used to represent a
colour of something. We could have used just about any name we liked
though. Good programmers are good at choosing names that help people
understand what their variables will be used for.

Values: the things put in the boxes
The things that are stored in variables are called values. They are the things
that are put into boxes. They are the actual pieces of information that are
manipulated by a
program. When we put a
value in a variable for the
first time we are
initialising it. Our
example instruction

colour1 = “red”
not only creates a new variable called colour1. It also stores the value “red”
in it. It initialises it with that value. As we will see later instructions can change
the value in a variable and we can copy values stored in one to another just
like we can with storage boxes.

Back to our program
Our program created three variables. They are created in the order they
appear in the program, because that is the order that instructions are
executed. The first was the one we saw above

colour1 = “red”
Which created our first storage box.

The information that is stored in a
variable is called its value: the

current contents of the box

A variable identifier is its name. It
identifies which storage box you mean

11 May 2015 Version 1.0

4

The program then created a second variable in the next instruction:

colour2 = “green”
It creates a second storage box to go with the first this time called colour2
and puts the string value “green” in it.

We will look at the third variable later.

So after executing the first part of the program:

colour1 = “red”
colour2 = “green”

we have created two variables, (i.e., two storage boxes) that each stores a
single string value.
The state of our program at this point in its execution looks something like that
below. The program has gathered two boxes together and stored some initial
values in them, ready for the rest of the program to manipulate. We have also
given each box a name so that we can tell them apart.

Assignment: putting a value in a box
Lets look at the following line of code in more detail.

colour1 = “red”

colour2

colour1

colour2

colour1

 “red”

“green”

“green”

“red”

11 May 2015 Version 1.0

5

It stores the string “red” in the variable called colour1. It puts “red” in the
box. In Python the symbol = is used to indicate that the command is an
assignment. Do not read it as the word ‘equals’ though as if you do you will
probably get confused. It is nothing to do with the maths symbol we use to
mean two things are equal. It is a command telling the program to do
something. Read it as ‘gets a copy of the value’. The above command
therefore means:

Variable colour1 gets a copy of the value “red”
It is a command telling the program to store the string value “red” into the
storage box that we called colour1.
The first part of an
assignment command
before the = symbol is
always a storage space: it is
the identifier of a variable.
After the equals symbol there is always something that will give us a value –
the value that we want to be stored in that place. It may be helpful to mentally
write an arrow over the top of the = symbol to help remember which way the
data moves (from right to left).

colour1 = “red”

Our variable box now contains a copy of the value “red”.

The next instruction in our program is another assignment

colour2 = “green”

It is similar but this time it puts the value “green” into variable colour2. Our
variable box colour2 now holds a copy of the value “green” :

So at this point, we have two variables. colour1 holds the value “red” and
colour2 holds the value “green”.

Assignment is a command saying
that a variable gets a copy of a value

colour1

“red”

colour2

“green”

11 May 2015 Version 1.0

6

To summarise, when we create a variable we assign it a value. We call an
assignment like this, where the first value is stored in the variable,
initialising that variable. In the above the assignments initialised the
variable colour1 with the value “red” and colour2 with the value “green”.
It is really important here to recognise the difference between the values
stored in variables and the names or identifiers of variables. Values are
the things that can be stored in boxes – that we have written inside the box –
“red” and “green” are the values in our example. Identifiers are just labels
stuck on the box so we know which is which. They are NOT data. In Python
string values have quotes round them so you know they are values not names
of variables. If there are no quotes round a word in a program then it will
either be the name of a variable or a keyword (a word with a special meaning
in the language like int).

Accessing a variable: getting a value out of a box
We have initialised our variables with starting values. Now we can do
something with the data we have stored there. In our simple little program, we
will just swap the two values in colour1 and colour2 over, so that at the end,
colour1 holds value “green” and colour2 holds “red”. We will need an extra
variable temp as a temporary storage space to hold on to values we don’t
want to lose while we swap the values around. In doing so we will see why it
is important to think of variables not just as storage boxes but as boxes that
come with an integrated copier and a shredder.
The next instruction in our program is

temp = colour1
As temp does not exist, executing this instruction creates a new variable – a
new storage box – called temp. This is just another assignment but it is a little
different to the previous ones we’ve looked at. Both sides are just the name of
a variable (no quotes used
in either case so neither are
values). When we give the
name of a variable before
the = in an assignment we
are giving a location to store
a value. When we give the name of a variable after the = we mean get a value
from that variable. This assignment says get the value from colour1 and put it
in temp. Drawing in the arrow can help to remind us which way the
information moves as now there is no clue from having a value on one side.

temp = colour1

However, there is a subtlety about what is happening here. It isn’t quite like
taking a value out of one physical box and putting it in another physical box.
Information isn’t like physical objects. This assignment doesn’t mean we

We get a copy of the value in a
variable by giving its name

11 May 2015 Version 1.0

7

actually do take the value out of the original variable. Our boxes have
integrated photocopiers and when we want their value we get a copy of it,
leaving the original where it is, safely stored in its original box. It is that copy
that is put in the other box.
The name of a variable before the = refers to a place to put a new value. A
name placed on the other side says to get a copy of what is in that variable
(and put it in the other variable).
In our example the assignment

temp = colour1
means get a copy of what is in colour1, and put the copy in the variable
called temp. colour1 itself doesn’t change at all. It still has the same value
after this command has been executed as it held before – in this case “red”.
An assignment only changes the variable named before the = sign. After this
assignment command the new state of our boxes looks like this where temp
now has the value “red” copied from colour1:

Overwriting the old value of a variable
Our program’s next instruction is

colour1 = colour2
This is basically the same as the previous one but illustrates a new subtlety
about variables: the way they act like shredders of old values. This
assignment says that
colour1 should get a copy
of the value in colour2.
As before, we make a
copy of what is in the

colour1

colour2

temp

“red”

“green”

“red”

When we assign a new value to a
variable its old value is destroyed

11 May 2015 Version 1.0

8

variable after the = sign, here whatever is in colour2. Looking at our pictures
of the boxes we see that the string “green” is currently in colour2, so it is a
copy of “green” that we put it in colour1. However, there already is a value in
colour1. Looking at our picture of the boxes we see that it holds the string
“red”. Now variables can only hold one value at a time – only one value per
box – so what happens? The old value is lost. Think of it as being shredded.
There is no way of getting that original version of the value back as it is
overwritten by the new value (we have lost the value unless we were clever
enough to save a copy of it somewhere else first). The new state of our
program is

The key point here is that when you put a new value in a box, you destroy the
old value. That value is now gone forever and the new value stored is the one
just copied from the other variable.
The final assignment in our program is similar, this time copying the value
from temp into colour2 whose value is destroyed: colour2 gets the value in
temp.

colour2 = temp
The value in temp is the one saved from colour1 in the earlier step (“red”). It
is now stored in to variable colour2, and the old value that was there before
(“green”) is shredded. That means even though the value in colour1 was
destroyed, because a copy was stored safely in to temp first, we end up with
the same value in colour2. We have used temp as temporary storage (hence
the name we gave it) to make sure we didn’t really lose the value when it was
destroyed.
Now look at the results when our fragment has finished. What has happened?

colour1

colour2

temp

“green”

“green”

“red”

11 May 2015 Version 1.0

9

The values in colour1 and colour2 have been swapped over – using temp
as extra storage space. Originally colour1 was “red” and colour2 was
“green”. Now colour1 is “green” and colour2 is “red”.
Why might you want to do a swap like this? Well it is the core operation you
need to do over and over again if you are going to sort data in to order,
whether alphabetically, into numerical order or into some other ordering. That
is something we use computers to do a lot.
Summary
We have seen that variables are like storage boxes that hold data and
assignment is the command in a program that tells the computer to store
new data in a variable. There are some subtleties about what happens during
assignment though. It is best to think of variables as special boxes. They are
storage boxes that have a copier and a shredder built in to them.
The important things to remember about variables are that:

- variables are given identifiers (names) so they can be referred to
again,

- variables hold values: the actual data that is being stored,
- it is important not to confuse the identifiers of variables (their names)

with their values,
- a variable can only store one value at a time,
- when you get a value from a variable you are making a copy: that

variable’s value is untouched, and
- when you store a new value in a variable you destroy anything that was

previously there.

colour1

colour2

temp

“green”

“red”

“red”

11 May 2015 Version 1.0

10

Exercise
Draw a series of pictures of boxes to show the state as it changes as this
program fragment is executed step-by-step. Is it a swap program too, or does
the swap go wrong?

colour1 = “red”
colour2 = “green”

colour1 = colour2
colour2 = colour1

Use of this material
Attribution NonCommercial ShareAlike - "CC BY-NC-SA"

http://creativecommons.org/licenses/by-nc-nd/4.0/

This license lets others remix, tweak, and build upon a work non-commercially, as long as
they credit the original author and license their new creations under the identical terms.
Others can download and redistribute this work just like the by-nc-nd license, but they can
also translate, make remixes, and produce new stories based on the work. All new work
based on the original will carry the same license, so any derivatives will also be non-
commercial in nature.

This booklet was written based on an existing booklet about Java and distributed with support
from the Mayor of London and Department for Education.

