Teaching London Computing

Programming for GCSE Topic 9.2: Circuits for Adding

MAYOR OF LONDON

Aims

- Show how computers are built from logic gates
- Circuit for Adding
 - ... two inputs
 - ... three inputs one column
 - ... many columns

Key Idea:

- Represent numbers as binary digits
- Digits as logic levels

HALF ADDER

Half Adder

- Simplest circuit for binary addition
 - input: two bits A and B
 - output: sum S and carry C
 - Sums \rightarrow ? \rightarrow circuit

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$ carry 1

Example:

Half Adder – Truth Table

- Binary addition truth table
 - input: two bits A and B
 - output: sum S and carry C

Α	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Quiz: Determine the formula for S and C

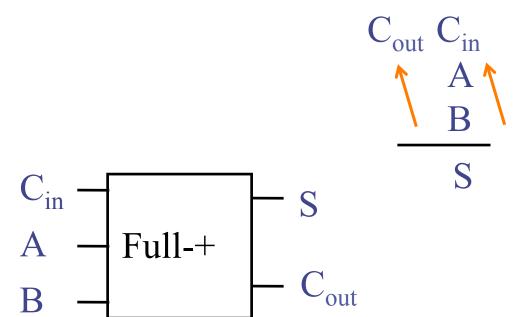
Half Adder – Formula

- Simplest circuit for binary addition
 - input: two bits A and B
 - output: sum S and carry C

A B	C S	
0 0	0 0	$S = \overline{A}.B + A.\overline{B}$
0 1	0 1	C = A.B
0 0 0 1 1 0 1 1	0 1	C = A.D
1 1	1 0	Quiz: draw the circuit

Half Adder – Circuit

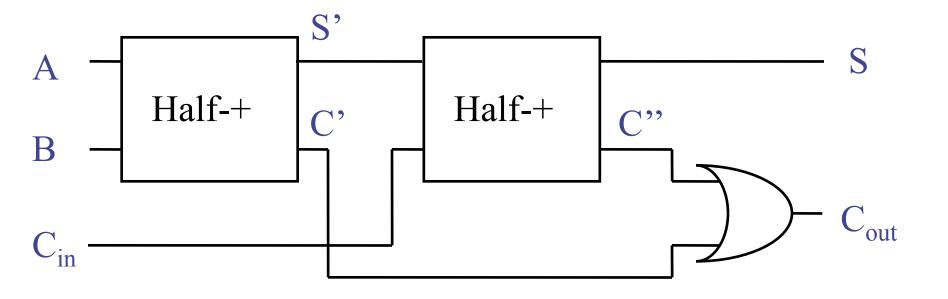
- Simplest circuit for binary addition
 - input: two bits A and B
 - output: sum S and carry C


АВ	C S	<u>C</u>
0 0	0 0	
0 1	0 1	$A \longrightarrow \bigcirc$
1 0	0 1	5
1 1	1 0	B

FULL ADDER

One Columns of a Binary Addition

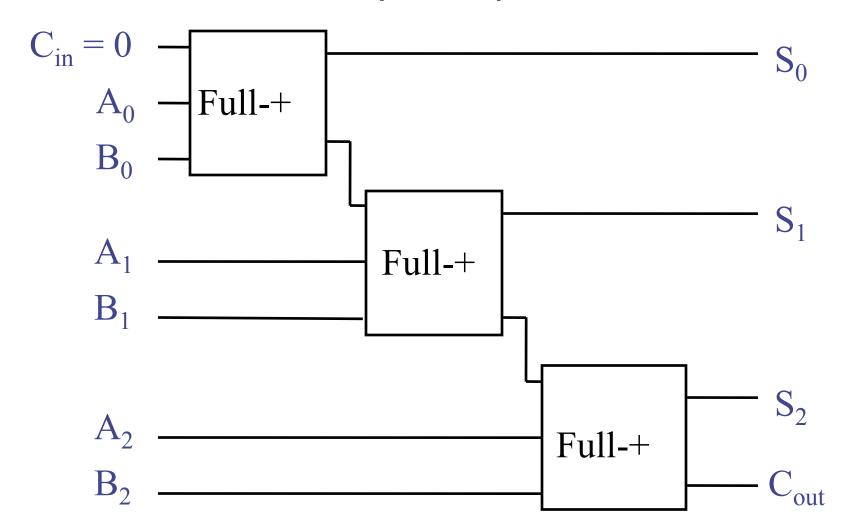
Full Adder - One Column


- Each digit (column) of binary add has 3 inputs
 - A, B and carry C_{in}

Α	В	B C _{in}		C _{out} S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Full-Adder from 2 Half Adders

- Step 1: add A + B
- Step 2: add carry to result
- Step 3: carry


Ripple Adder

Add each bit, carry from previous bit

Ripple Adder

Add each bit, carry from previous bit

SYLLABUS

Syllabus — Binary

- GCSE (OCR)
 - Logic circuits: and, or , not
 - Truth tables
 - Writing boolean expressions
- AS/A2 (AQA)
 - (AS) More boolean algebra
 - (AS) More gates

Joined up view?

How to make sense of logic unless used e.g. adder circuit.

binary → truth table
→ circuit

Summary

- Show how logic circuits build a computer
 - Binary digits become logic inputs
 - Circuits operate on numbers
- Adder stages
 - One column, no carry
 - One column, with carry
 - Many columns