Teaching London Computing

Programming for GCSE Topic 3.3: Boolean Logic and Truth Tables

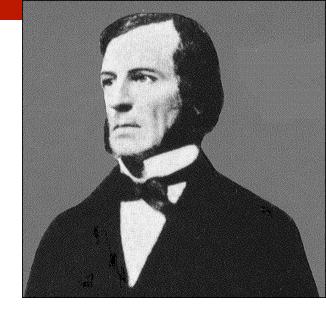
SUPPORTED BY
MAYOR OF LONDON

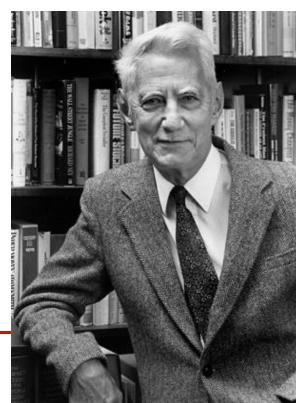
Aims

- Introduce the study of logic
 - Introduction to logic
 - Truth tables
 - Logic and programming
 - Writing logic Boolean algebra
 - •

'Logic gates' are covered later

Teaching Issue


- How to provide a coherent, joined up view
 - Some curricula include logic circuits but it is not related to operation of a computer
- Abstraction e.g. 'X and Y'
 - Best way in?
- Notation?
 - Unfortunately, several used


Introduction to Logic

True and False

Some History

- George Boole
 - Invented 'Boolean Algebra'
 - Makes 'logic' into mathematics
 - "An Investigation of the Laws of Thought", 1854
- Claude Shannon
 - A Symbolic Analysis of Relay and Switching Circuits, 1938
 - Based on his master's thesis.

True or False?

- Logic view: true or false
 - 'My name is David'
 - 'Today is a Tuesday'
- Proposition: a statement that is true or false
- In reality, some statements are more complex
 - 'That colour suits you'
 - 'You are the most beautiful girl in the world'

WRITING LOGIC

Boolean Algebra

Logical / Boolean Variables

- X, Y (an uppercase letter)
- A variable that may be true of false
- A proposition

Writing Logic

Python

Logic Gates

Maths

- X and Y
- X or Y
- not X
- True
- False

$$X + Y$$

$$\overline{\mathsf{X}}$$

1

0

X
$$\wedge$$
 \vee

true

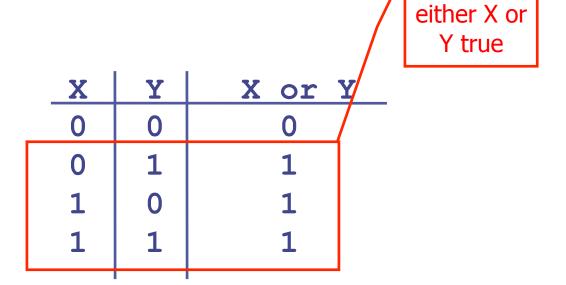
false

'X', 'Y' are Boolean variables

TRUTH TABLES:

AND, OR, NOT

Truth Tables


- Table of all variables in a Boolean formula
- 2 variables

X	Y	Result
0	0	
0	1	
1	0	
1	1	

- Each row has a possible combination of X and Y
- Table covers all possibilities

AND, OR

• OR

AND

X	Y	X and Y	both X
0	0	0	and Y true
0	1	0 /	
1	0	0	
1	1	1	

True when

NOT

X	not	X
0	1	
1	0	

LOGIC AND BOOLEAN EXPRESSIONS

... Python programming

Boolean Expressions

- Combine conditions
- If A, B are conditions true or false

Expression	Description
A and B	Both A true and B true
A or B	Either A true or B true
not A	True when A is false

Examples

What are the values of the following?

Expression	True or False?
10 > 5 or "hello"[1] == "e"	
2 + 3 < 10 and 6 != 6	
10 != 11 or 5 != 5	
10 < 10 and "world"[1:3] == "or"	
not (10 >= 11)	

Compare these programs:

```
if age >= 21 and age <= 25:
    print("Great age")
else:
    print("Not so good! ")</pre>
```

```
Equivalent
```

Nested 'if' statement

```
if age >= 21:
    if age <= 25:
        print("Great age")
    else:
        print("Not so good!")
else:
    print("Not so good!")</pre>
```

USING TRUTH TABLES TO CHECK EQUIVALENCE

Truth Tables

- Table of all variables in a boolean formula
- 2 variables
 - 4 row
- 3 variables
 - 8 rows
- 4 variables
 - 16 rows
- Two formula same if (and only if) same truth table

X	Y	Z	Result
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Use a truth table to check equivalence

$$(\overline{A.B}) = \overline{A} + \overline{B}$$

Are the two formula the same:

- not (A and B)
 (not A) or (not B)

A	В	NOT (A . B)	(NOT A)	+ (NOT B)
0	0			
0	1			
1	0			
1	1			

Use a truth table to check equivalence

$$\overline{(A.B)} = \overline{A} + \overline{B}$$

A	В	NOT (A . B)	(NOT A)	+ (NOT B)
0	0	0	1	1
0	1	0	1	0
1	0	0	0	1
1	1	1	0	0

Use a truth table to check equivalence

$$(\overline{A.B}) = \overline{A} + \overline{B}$$

A	В	NOT	(A . B)	(NOT A)	+	(NOT B)
0	0	1	0	1	1	1
0	1	1	0	1	1	0
1	0	1	0	0	1	1
1	1	0	1	0	0	0
		' T	l	l	Т	•

QUIZ: Are these the same?

```
if age >= 20 and age <= 25:
    print("Great age")
else:
    print("Not so good! ")</pre>
```

```
if age < 20 or age > 25:
    print("Not so good!")
else:
    print("Great age")
```

QUIZ: use a truth table to check

$$(\overline{A + B}) = \overline{A} \cdot \overline{B}$$

A	В	NOT (A + B)	(NOT A) . (NOT B)
0	0		
0	1		
1	0		
1	1		

Rules of Boolean Algebra

Boolean Algebra Rules

Rules for NOT

$$A \cdot \overline{A} = 0$$
 never A and not A
 $A+A=1$ always A or not A

Associative rules

$$A.(B.C) = (A.B).C$$
 and associative $A+(B+C) = (A+B)+C$ or associative

De-Morgan's Laws

Important law for exchanging AND with OR

$$(\overline{A \cdot B}) = \overline{A} + \overline{B}$$

'A and B' is false when either A is false or B is false

$$(\overline{A + B}) = \overline{A} \cdot \overline{B}$$

'A or B' is false when both A is false and B is false

Summary

- Logical expressions
 - AND, OR, NOT
- Logic and programming
 - Reasoning about conditions
- Truth table
 - Equivalence of expressions
- Boolean expression (formula)
 - Algebraic rules
- Next stop: logic circuits