
1

1

CS4FN: Computer Science for Fun

Computational Thinking:

Searching to Speak1

Helping people with locked-in syndrome
• What is Computational Thinking?
• How do computers find things?
• How do we tell which algorithm is best?
•

Searching to Speak

One of the worst medical conditions I can imagine is locked-in syndrome. It
leaves you totally paralyzed except perhaps for the blink of an eye. Your
intelligent mind is locked inside a useless body, able to sense everything but
unable to communicate. It could happen to anyone, out of the blue, as a result
of a stroke. If you wanted to help people with locked-in syndrome, the obvious
thing might be to become a doctor or nurse, but how could a computer
scientist help?

There’s no cure for locked-in syndrome so there isn’t a lot medics can do
beyond making their patients comfortable. One big problem to tackle though is
how to help people with locked-in syndrome ‘talk’. What a computer scientist
might do then seems obvious – they could invent some new technology to
help. However, with some computational thinking we can give a much better
answer than just “we need technology”.
‘The Diving Bell and the Butterfly’ is an incredibly uplifting book. It’s the
autobiography of Jean-Dominique Bauby, written after he woke up in a
hospital bed totally paralysed. In the book, he describes life with locked-in
syndrome. He did have a way to communicate not only to write the book but
also with medics, friends and family. He did it without any technology at all,
though. How?
Put yourself in his position, waking up in a hospital bed. How could you
communicate? How could you write a whole book? You have only a helper
with a pen and paper to write down your ‘words’? All you can do is blink one
eye. You can’t move in any other way. That means you can’t speak. Can you
come up with a way to communicate?

1 Note that a ‘glossy’ version of this booklet for students is in preparation and
will be available from teachinglondoncomputing.org

1

2

Simple as A, B, C
What you need is to agree a way of turning blinks into letters. Your first idea
might be that one blink means ‘A’, 2 blinks means ‘B’ and so on. The helper
just has to count the blinks and write down the corresponding letter.
In coming up with this idea, we are doing computational thinking: the kind of
problem solving that computer scientists do. It’s a kind of computational
thinking called ‘algorithmic thinking’. A computer scientist calls the agreed
way of communicating an algorithm: a series of steps to follow in a given
order that achieves some goal (here to communicate letters and words).
Algorithmic thinking is about coming up with algorithms to solve problems.
The beauty of algorithms is that the steps can be followed without those
involved having any understanding of what they are doing. With our algorithm
the helper presumably would know what they were doing and why, but the
book would still get written even if they didn’t. All the helper needs to do is
count blinks and write down the letters. We could give them a table to look up
the letters in so they could do it completely without any thought at all. The
beauty of algorithms is that they allow people to do things ‘mechanically’ like
this – and that means computers can blindly follow the instructions too.
Our algorithm for communicating actually comes in two parts. There is one
part for Bauby to follow (blinking the right number of times) and one for the
helper (count the number of blinks and write down the corresponding letter
when the blinks stop). In fact computer scientists have a special name for this
kind of algorithm that passes information between two people or computers –
it’s called a ‘protocol’. If both people follow their part of the protocol then the
words Bauby is thinking will end up written on the piece of paper. If either
makes a mistake – losing count for example so not following the protocol –
then the message won’t get through. The great thing about computers is they
don’t get things wrong like that – they follow their instructions exactly, every
time.
Algorithmic thinking is a particular kind of problem solving – one where you
don’t just come up with an answer like ‘42’ but come up with a solution in
terms of steps that others (including a computer) can follow to get answers.
We just came up with a solution like that for Bauby. It doesn’t just tell us what
he is trying to say now. It is a way we can always work out what he wants to
say. It sounds pretty slow though. Maybe there is a better way. Thinking about
better solutions is also a part of algorithmic thinking.
How did Bauby do it?
Bauby did have a better way, a better algorithm. We should remember that
the helper can speak, so we should make use of that. The algorithm Bauby
used involved the helper reading the alphabet aloud "A...B...C..." When the
letter he was thinking of was spoken, he blinked. The helper wrote that letter
down and then started again, letter after letter. Try it with a friend –
communicate your initials to them that way. Then think about that being the
only way you have to talk to anyone. I hope your name isn't Zebedee
Zacharius Zog or Zara Zootle!
Once you’ve tried it you may have realized there are some more problems we
have to solve to really make it work. Having tried it a few times, you might also

1

3

be able to think of other ways to improve the algorithm. What can you come
up with?
Sorting out the details
One thing you may have worked out is that there is more than the 26 letters to
deal with – we need spaces, digits, full stops, command so on too. We need
to add them to the list of letters the helper works through. Another thing to
deal with is what happens if the person blinks by mistake? We need a way to
say; “Ignore that last blink and start the letters again”. One way might be to
agree that blinking twice quickly means that. Perhaps you thought of other
problems that need solving too.
Algorithmic thinking is about thinking about all those details and finding
solutions. It’s about realizing there can be many ways of doing things, and
then coming up with the best one for the situation. Notice too that one of the
problems was about what people do. In theory our solution works: just blink at
the right time! We could arrogantly say the people should just do the right
thing and it’s their fault if they get it wrong. In practice they will sometimes
blink at the wrong time. It’s better if we solve the problem in a way that does
work for people. After all it is a person we are trying to help! Computational
thinking is about ‘understanding people’ too.
Doing it better
We can speed things up if we realize that sometimes halfway through a word
we can guess what it is. If you have got “a-n-t-e-l” it would be a pretty good
bet to assume it was antelope. So you could change the rules to allow the
helper to make guesses like that. We’d need a way for the person to say no
after a guess though – perhaps the rule could be that they just blink if the
word is right and do nothing if not. This is of course how predictive texting
works – it’s the algorithm phones use. Maybe that’s where you got the idea
from if you thought of it! If you did then you’ve just used another
computational thinking skill: ‘transforming problems’. Often problems turn
out to be essentially the same as something you’ve already seen in a different
situation. If you already have a solution for that other problem then you can
just use it. Algorithms are just a way of giving this kind of general solution. A
phone has the same problem working out what words are being typed as a
helper has working out the word someone with locked-in syndrome is thinking.
Once we realize that then any solution we come up with for one can be used
for the other.
Bauby’s helpers did use a version of predictive texting. Bauby also realized
that the ABC algorithm could be improved upon in a different way. He had
been the Editor-in-chief of the French women's magazine, Elle, before that
hospital bed, so knew a lot about language. He knew that some letters are
more common than others in human languages. E is the most common letter
(in both English and French) for example. He therefore got the helper to read
out the letters in order of how common they are – their frequency. In English
the order is "E...T...A...O...". In French it is "E...S...A...R..." He spoke French
so he used the French order. That way the helper got to the common letters
more quickly.
A similar trick has been used through the ages to crack secret codes. The
algorithm of using letter frequencies was actually invented by Muslim scholars

1

4

over a thousand years ago. In fact Mary Queen of Scots was beheaded
because Queen Elizabeth I’s spymaster Sir Francis Walsingham was better at
computational thinking in this way than she was. That’s another story though.
Bauby’s idea of using frequency analysis is another example of ‘transforming
problems’. Once we have recognized that cracking codes and guessing
letters are similar problems, we can see that the frequency analysis solution
invented for one can be used for the other.
How fast is that?
Let’s get back to Bauby’s algorithm. We’ve improved things for sure. The new
way must be better than our original idea. An obvious question though is how
fast actually is it – “How long did it take to write that book?” Is it the best we
can possibly do, or could we have come up with an even better algorithm, and
so helped him write the book much more easily?
We need a way of measuring how good an algorithm is. One way would be to
do it experimentally – to time how long each takes to communicate some
specific passage. We could do it lots of times with different people and see
which way is fastest on average. That would take lots of time and effort. There
is a better way.
We can do some ‘analytical thinking’. We will use some simple maths to
work out an answer. First, rather than think about time let’s think about the
work done. If we count how many letters of the alphabet the helper has to say,
then we can always then turn that in to the time taken just by knowing how
long it takes to say one letter. We have done something called ‘abstraction’.
It is another part of computational thinking, used to simplify problems.
Abstraction is just a long word meaning ‘hiding some of the details’. The idea
is used throughout computing as a way of making things easier to do. Here
we are using “number of letters said” as an abstraction of the actual time
taken.
So how do we work out how many letters have to be said? There are several
questions we can ask. The simplest is: what is the best case? What is the
fewest letters the helper would possibly have to say to write the book? We
could also look at the worst case. If we are unlucky, how bad could it be?
Finally we can look at the average case – that will give us a realistic estimate
of how much work it actually took.
The best and the worst
Let’s, for the sake of argument, stick to communicating just letters of the
alphabet without digits and punctuation. We will analyse our simple algorithm
of the helper saying A, B, C …
In the best case, the whole book would be nothing but A’s: “AAAAAAAA”
(perhaps expressing the pain he is in). To communicate a single letter ‘A’ we
just say one letter ‘A’ (one question) and we have the answer. Multiply that by
the number of letters in the book and we have the best case for writing the
whole book.
The worst case, perhaps telling a story where someone snores the whole
time, "ZZZZZZ", takes 26 questions to get each letter. That gives us the
bounds on what communicating anything would be. It’s always no better than
1 and no worse than 26 letters spoken per letter communicated.

1

5

A closer estimate would be the average number of questions asked per letter:
the average case. But that’s easy to work out. In a long message, for every
‘A’, on average there will also be a ‘Z’ somewhere else in the message. For
every ‘B’ there will be a ’Y’, and so on. That means on average over the whole
book roughly 13 questions will be asked per letter dictated. Multiply the
number of letters in the book by 13 and you have an estimate for how much
work was done to write it. Multiply that by the average time for the helper to
say a letter and you have the time taken to write the book.
Bauby's modification, asking about common letters first, improves things a bit
– maybe it will be down to 9 or 10 letters spoken. We could work that out
more precisely using the frequencies of the letters. So it is an improvement,
but the worst case for a letter is still 26.
As any computer scientist knows, though, we can do far better. It is possible
to work each letter out with only 5 questions! Guaranteed! That’s not the
average case, it’s the worst case!
Can you work out what 5 questions you need to ask?
Do it in 5
Whether you came up with the answer or not, I guarantee you know what the
right sort of question is, but only if we look at a different problem.
Let’s play a game of 20-questions – the children’s game where I think of a
famous person and you try and guess who I’m thinking of by asking
questions. The twist is that I will only ever answer yes or no. Play a game with
a friend, thinking about the kind of questions you ask as you do.
Let’s see how a game might go.
“Are they female?”
No
“Are they alive?”
No
“Are they a film star?”
No
“Are they from Britain?”
No
“Are they from America?”
No
“Are they from Asia?”
Yes
“Are they from India?”
Yes
 “Are they a politician?”
Yes
“Is it Ghandi?”
Yes
Chances are when you played the game, you asked similar questions. You
almost certainly didn’t start by asking questions like “Is it Adele?”, “Is it Usain
Bolt?”, “Is it the Queen?” You would never have got the answer in 20
questions that way. You only ask that sort of question at the end when you
are pretty sure you know who it is (as we just did). Instead you probably

1

6

asked a question like "Are they male?" first.
Why is that a good first question? Well, it’s because it rules out half the
possibilities, whatever the answer. If you ask “Is it Adele?” then you rule out
millions if you are right, but if wrong (more likely) you only rule out one person.
You would have to be lottery-winning lucky to do well that way. So the secret
to playing 20 questions is to ask questions that rule out half the people each
time.
How good is that?
How good is that? Well let’s suppose I might be thinking of one of a million
people at the start. If I rule out half the people each question, how many
questions does it take? After one question, we are down to 500,000 people
left, 2 questions 250,000, then 125,000 people, about 64,000 people
(simplifying a little to make the numbers easier!), 32,000 people, 16,000,
8000, 4000, 2000, 1000… After 10 questions there are only 1000 people left
out of the original million it could be. Keep going…500 left after another
question, 250, 125, 64 (ish) 32, 16, 8, 4, 2 and on the 20th question there is
only one person left it could be. If you can ask perfect halving questions you
are guaranteed to win.
So with the right questions, in the worst case it takes only 20 questions to find
the person I am thinking of out of a million possibilities. Compare that with our
saying it takes us 13 questions (and worst case 26) to find one thing out of 26
letters of the alphabet. Yes/No is no different to Blink/No-blink. When we
asked, is it A? Is it B? we were doing the equivalent of asking “Is it Nelson
Mandela?”, “Is it Mickey Mouse?” You are trying to work out one of many
things I am thinking of, just the same. It is actually the same problem!
A new algorithm
That’s where the idea of ‘transforming problems’ comes in again. If it’s the
same problem then surely the same strategy will give us a better solution than
the ones we came up with so far. What is the equivalent of our halving
solution for letters of the alphabet? We need to halve the alphabet each time.
The obvious first question is "Is it before N?" The next question depends on
the answer to the first one. If the answer was “Yes” then we next ask, “Is it
before F?” If the answer was no we ask “Is it before T?”, and so on. That way
we are sure to get to any letter of the alphabet that the person is thinking of in
only 5 questions.
We can even improve things more using the frequency analysis trick. With
only 26 letters we could, for example, make it so we get the letter E in only 3
questions. We could also still use the predictive texting trick to guess words
that were only partly completed. All those solutions still apply here.
Search algorithms
Our solution carried over because the problem was essentially the same. It is
a ‘search problem’: given a series of things, find one particular one we are
looking for. The solutions to this problem are called ‘search algorithms’. They
are sure-fire ways of finding things. The first approach of checking each of the
possibilities in turn (Is it A?, Is it B?...Is it Adele? Is it James Bond? …) is an
algorithm called ‘linear search’. Sometimes it’s the best you can do. For
example, if you see a robbery and the police set up an identity parade, you

1

7

couldn’t do better than linear search – check each face in turn until you see
the person in the line that did it! Linear search works well when there is no
order to the things you are searching through. If you are searching for a
jumper that could be in any draw of your chest of drawers, start at the top and
check them one at a time.
Our other algorithm involved finding halving questions: Is it before N? Are they
female? Finding halving questions is a general problem solving strategy called
‘Divide and conquer’. If you can come up with a divide and conquer solution
to a problem, it is likely to be very fast as repeated halving gets you down to
one answer very quickly, and far, far faster than checking one thing at a time.
The simplest divide and conquer search algorithm is called ‘binary search’.
Imagine lining all the things you are searching through in order, smallest at
one end, largest at the other. Binary search involves going to the middle and
checking whether the thing you are looking for comes before or after it. You
then discard the other half and do the same again on what is left. You keep
doing that until only one thing remains – the thing you were looking for. That is
probably close to what you do if given a big paper telephone directory and
want to find a particular name. You certainly wouldn’t start at page 1 and
check each name in turn until you find the one you are looking for!
There are many more search algorithms than just these two. For example,
how does Google search through every web page on the planet in fractions of
a second? It needs a better algorithm still!
Search algorithms make use of another form of abstraction. We abstract
from the details of the particular problem and see it as just a search problem.
Then our search algorithm is a ready-made solution for lots of problems.
Thinking about it another way, once we have come up with a strategy to win
at 20 questions, we can generalise that solution to the idea of divide and
conquer – we have a general strategy that works for other problems too.
Improving life for Bauby
So Bauby should have got the helper to ask halving questions. Think about it.
5 questions at worst rather than 13 on average, multiplied up by all the letters
in his book. It’s not only the book either, it’s talking with his friends and family,
the doctors and nurses too. If only he had known some computer science,
how much easier his life would have been!
Algorithmic thinking first
The thing to notice though is we haven’t been looking at technology at all. It
has all been about two people ‘talking’. Now we have worked out a good way,
a good algorithm, we can think how we could automate it with suitable
technology. We could build an eye tracking system that detects blinks or an
electrode cap that can pick up whether he is thinking yes or no, perhaps. The
point is that whatever technology we use it would need a search algorithm
underneath it. Pick the wrong one and however good the technology is, the
communication will still be slow – 13 questions instead of 5. It makes no
difference whether the helper is a computer or a human for that. If we hadn’t
thought about the algorithms first we could have come up with a frustratingly
slow system. Computing is not just about the technology it is about the
computational thinking that goes into coming up with good solutions.

1

8

Understanding people first
So we all agree with a little bit more computational thinking Bauby’s life could
have been improved. But wait a minute. Perhaps we got it wrong. Perhaps we
would have ensured his book was never completed and his life was even
more a hell. We did not start with technology but we did start with computer
science. Perhaps we should have started with the person. Were we counting
the right thing?
As our measure of work – our ‘abstraction’ we used the number of questions
asked. That is the job of the helper and it may be tedious but it's not difficult.
What if blinking was a great effort for Bauby. His solution involved him blinking
only once per letter. Our divide and conquer algorithm requires him to blink 5
times. Multiply that by a whole book. We could have made it 5 times harder.
It could be blinking is easy and our algorithm is better. We don’t know the
answer, because we didn’t ask the question. We should have asked first. We
should have started with the person.
Furthermore, his solution is easy for anyone to walk in and understand. Ours
is more complex to follow and might need some explaining before the visitor
understands and Bauby is not going to be the one to do the explaining.
Thinking about people is important!
It worked for him
One thing is certain about Bauby's solution – it worked for him. He wrote a
whole book that way after all. Perhaps the helper did more than just write
down his words. Perhaps they opened the curtains, talked to him about the
outside world or just provided some daily human warmth. Perhaps the whole
point of writing the book was that it gave him an excuse to have a person
there to communicate with all the time, paid for by his publisher!
The communication algorithm would not then be about the needs of the book,
but about the book helping a deep need for direct communication with a
person. Replace the human with technology and perhaps you have replaced
the thing that was actually keeping him alive.
On the other hand, perhaps once he is able to talk to a computer he can get
out of his hospital bed into the virtual world, emailing friends, tweeting,
keeping a face book page, controlling an avatar. Perhaps we have made
things better. Again we need to find out what he really wants.
In an extreme usability situation like this the important thing is that the user
really is involved throughout. We call this ‘user-centered design’. In fact it’s
better when designing any system for people, not just in extreme situations. It
is they who ultimately have to adapt what’s available to make it work for them,
not only technically but also emotionally and socially. Otherwise we may
devise a ‘solution’ that is in theory wonderful but in practice hell on earth.
Computer Scientists have to think about much, more than just computers.

1

9

The computer science
Search algorithms

Given something to search for (known as the ‘key’) a ‘search algorithm’
guarantees to find it if it is there. The key could be a letter someone is thinking
of, a number in an array, a film star’s web page, or a record in an employee
database.
One simple search algorithm is called ‘linear search’. It involves lining up all
the things you are searching through and checking them one at a time from
one end to the other. If you find the thing you are looking for you can stop. If
you note its position, you can go straight back to it. If you get to the end
without finding the key then you know for sure that it is not there at all.
A faster way of searching is called ‘binary search’. It involves lining
everything up in a known order, like numerical order or alphabetical order.
That allows us to do checks that rule out half of the list at every step. We
check the middle entry. If the key is before the middle entry in the order then
the key must be in the first half of the list (because they are in order). If the
key comes after the middle entry then it must be in the second half. We rule
out half the list and do the same again on the part that remains – repeatedly
until there is only one thing left. It is either the key, or the key is not there.

Efficiency Analysis
There are lots of different algorithms for searching. How can we choose
between them? One way is on the basis of how efficient they are. We can
choose a particular critical operation that gives a good idea of how much work
is done – like the number of questions asked or the number of blinks needed.
We can then work out how often that operation happens in the best case, the
worst case and on average.

Computational Thinking
Computational thinking is about solving problems for people. People therefore
come first. You have to understand the problem you are solving from their
point of view, before you dream up solutions. Otherwise your great technical
solution will be useless. To be a great computer scientist, you have to
understand people.
Algorithmic thinking is about devising a precise way to do a task, with all the
details covered. Given an algorithmic solution other people or computers can
then follow the instructions mechanically. They don’t need to solve the
problem themselves to get answers. Follow a search algorithm and you find
whatever you are looking for.
One way to come up with solutions is to spot when one problem is the same
as another. If we can transform problems into ones we have seen before
then we can just reuse the solution. Once we have a good search algorithm
we can adapt it for use with lots of different search problems.
Thinking about it another way, once we have come up with a strategy to solve
a particular new problem, we can generalise that solution to a strategy that
works for other problems too. Asking 50-50 questions in a game generalises
to the divide and conquer strategy. Similarly we can generalise an algorithm

1

10

for a specific problem to give a search algorithm. Generalising the idea of
asking “Is it A?”, Is it B?” gives us the linear search algorithm that applies to
any search problem.
We can use analytical thinking to give us solid ways to compare different
algorithms. By using abstraction we focus on the details that matter – though
we have to make sure we don’t lose the details that matter! The method that
is best for our purpose might be the fastest but other properties like memory
needed could matter too.

Brought to you by:

Teaching London Computing:
teachinglondoncomputing.org

Computer Science for Fun:
cs4fn.org

This cs4fn story was written by Paul Curzon, 2014. The cs4fn team gave
support, particularly Jonathan Black. Zali Collymore-Hussain gave valuable
comments that led to improvements.
For courses and resources developed for teachers in London, including our
classroom activities and slides directly linked to this booklet visit
teachinglondoncomputing.org a joint project between Queen Mary, University
of London and King’s College London funded by the Greater London
Assembly.
For more cs4fn resources for schools, visit cs4fn.org/teachers/

