
1

Computer Science activities with a sense of fun: 20-Questions V1.1 (19 January 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

20 Questions

Age group: 11 – adult

Abilities assumed: Knowledge of searching using linear search

Time: around 15 minutes,

can be used within a longer workshop activity

Size of group: anything from 2 to hundreds

Focus

Search algorithms: linear search versus binary search.
Divide and Conquer problem solving
Introduction to efficiency analysis
Computational Thinking

Syllabus Links

This activity can be used
• as a general introduction to a computing topics such as what an

algorithm is and how they can be compared,
• to teach specific syllabus topics such as:

KS3: understand several key algorithms (searching) that reflect
computational thinking; use logical reasoning to compare the utility of
alternative algorithms for the same problem
AQA A’level 3.1.1 Problem Solving: Linear Search
AQA A’level 3.3.2 Programming concepts: Binary search
AQA A’level 3.3.1 Problem Solving: Abstraction,

comparing algorithms

Summary

Play the game of 20 questions as a way to show the audience they already
instinctively know the key to efficient searching and the basis of divide and
conquer problem solving.

Aims
This activity aims to teach the idea of divide and conquer problem solving in
the context of search algorithms. It also introduces the idea of efficiency
analysis as a way of comparing algorithms.

Technical Terms

Search algorithm, linear search, binary search, efficiency analysis, divide and
conquer.

Materials

Nothing special required.

1

Computer Science activities with a sense of fun: 20-Questions V1.1 (19 January 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

What to do

The Grab:
There are several possible grabs to use for this activity. We use our “Locked-in”
activity, which also introduces linear search as the grab. It involves a discussion of
helping totally paralysed people to communicate (See Locked-in activity and
Searching To Speak resource in Further Reading below).

The following is a short simple grab as an alternative: Point out that there are billions
of web pages out there and yet it can find things in fractions of a second. Does it do
linear search checking every web page in turn? Computers are not actually fast
enough to do that! There must be cleverer search algorithms than linear search! This
activity is about starting to explore how.
This grab could incorporate a simple computer activity. Get each student to choose a
famous person and search for them using some search engine, reporting back how
quickly the search was done.

The Set-up:
Review with the class how linear search works (e.g., ask the class to explain it). Set
up a problem about searching for one thing amongst a million. If the class understand
arrays then it could be about finding a single name in an array of a million names. If
not it could be, for example, how you find a book to read on a shelf of books in a
random order, or how you find a particular student’s exam paper amongst a large pile
of exam papers. The “Locked-in” activity is another possibility as the set-up for this.
The activity:
Play a game of 20 questions with the class. You think of a famous person and the
class try and guess who you are thinking of by asking yes/no questions. They have 20
questions to guess correctly. However, you can only answer yes or no to the
questions. As you play encourage the class to think about the kind of questions they
are asking and what makes a good question.

A game might go.
“Are they female?” No
“Are they alive?” No
“Are they a film star?” No
“Are they from Britain?” No
“Are they from America?” No
“Are they from Asia?” Yes
“Are they from India?” Yes
 “Are they a politician?” Yes
“Is it Ghandi?” Yes

Point out that they didn’t ask questions like: “Is it Adele?” or “Is it Usain Bolt?” until
quite late. Ask them why not?

Ask them what is the best first question to ask, did they ask it and why is it good?
They are likely to have chosen male or female either first or very early. Encourage
them to think about what is different about it to the other kind of question.
What makes it a good first question?

1

Computer Science activities with a sense of fun: 20-Questions V1.1 (19 January 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

It’s because it rules out half the possibilities, whatever the answer. If you ask “Is it
Adele?” then you rule out all but one if you are right, but if wrong (more likely) you
only rule out one person. You would have to be lottery-winning lucky to do well that
way. So the secret to playing 20 questions is to ask questions that rule out half the
possibilities each time.
Asking a series of questions like “Is it Usain Bolt?” is exactly the same as doing
linear search. You can imagine that you are lining up all the possible names in a line
and checking each in turn.

You can see how much better halving questions are by doing a simple efficiency
analysis. Suppose there are a million possible famous people that you could have been
thinking of at the start. Count down, halving the number of people it could still be
(keeping count on your fingers the number of questions asked: 1 million, 500,000,
250,000 people left, 125,000, 64,000 (ish to keep the numbers simple) 32,000, 16,000,
8000, 4000, 2000, 1000. After ten questions there are only a thousand people it could
possibly be. Keep going and you find that it takes only 20 questions and you are down
to one person left.

This shows that by following a divide and conquer approach to searching for
something (here searching for the person someone was thinking of) we can massively
improve how quickly we find what we are looking for. Linear search (checking things
one at a time) would take on average half a million questions to find the thing we are
looking for if there were a million possibilities. With a divide and conquer algorithm
we can find it with only 20 questions as long as they are perfect questions. It is a
massively faster algorithm.
The summary
Searching for things by checking each place one by one seems an obvious thing to do
– it is a simple algorithm. However, it is very slow. Divide and conquer gives much
faster algorithms. It is the approach to solving a problem where you split the problem
in half in a way which leaves you with a simpler version of the same problem – you
are still looking for the same thing, just on a problem half the size. Do that over and
over and you get the answer incredibly quickly.

Binary search is one search algorithm that uses such a divide and conquer approach. It
assumes your data is sorted. Rather than checking each piece of data in turn, you go to
the middle element and use that as a signpost. You check whether the thing you are
looking for is bigger or smaller that it and then only search the bottom or top half of
the data as appropriate. Because the data is in order you can tell which side it must be.
You keep doing that until you only have one piece of data left and check if it is the
thing you are after. This is the same kind of divide and conquer style of algorithm as
used playing 20 Questions, ruling out half the data with every question asked.

There are also some computational thinking lessons here. We have seen an
algorithmic approach to problem solving (divide and conquer) that gives a massive
improvement in speed of a task: here searching. It can be used more generally than
just this situation. We’ve also seen a way of analysing an algorithm that allows us to
compare different algorithms that do the same thing. This is based on an abstraction
idea too, where rather than counting time we pick an operation (questions asked) and
use it as our measure of work done. Finally we’ve seen how we can translate
problems from one domain to another. A solution we naturally knew for how to play
20 questions gives us a way to solve other search problems like searching an array.

1

Computer Science activities with a sense of fun: 20-Questions V1.1 (19 January 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

Variations and Extensions

Locked-in
This activity naturally follows the locked-in activity (see below). That can be used to
introduce linear search as a solution to working out a letter a locked-in person only
able to blink is thinking. After looking at its efficiency – on average 13 questions to
work out a letter, point out that any computer scientist knows it takes 5 questions at
worst. Point out also everyone knows the right questions to ask – but to show this you
need to switch problems to the game of 20 Questions. After completing the 20
Questions exercise switch back to working out a letter someone is thinking – is there a
divide and conquer solution? If so what are the questions? The answer is to ask
questions that halve the alphabet – you ask “Is it before M in the alphabet?” first. This
illustrates the idea of translating solutions from one problem to another. See “Further
Reading” for a booklet giving this combined story.

Acting out binary search
You can get the class to act out binary searching of an array. Give each a random
number on a card and get them to stand in a line in an order – they are just an array.
Cards on the floor numbered from 0 can give the array index. Another student is
given a value to search for. They go to the middle element and ask if it is larger or
smaller. All students on one side sit down. They then go to the mid point of those left
standing and keep repeating this process until only one person is standing. It is the
card they are after. A follow up is to ask how they would know if the card searched
for wasn’t there. You could also contrast with linear search by doing that first.

Searching a telephone directory
To make the link to searching data more concrete hand out a paper telephone
directory (or other similar alphabetically sorted list such as an index in a large book,
or a list of contacts in a phone) and ask the student to look up different names. Have
the class think about what algorithm they use – is it linear search or is it a divide and
conquer approach. Do they go to the middle of the telephone directory whatever name
is being looked for? Or do they follow an algorithm that is more efficient? If so get
them to explain it. Have them think about at what point they switch to linear search
and start running their fingers down the list of names. Have them consider why a
telephone directory (or an index) is sorted in the first place. What other lists of things
can they think of that are sorted and why – what are those lists used for?

CS Unplugged: Binary Search activity
Another follow-up activity is the CS Unplugged (www.csunplugged.org) activity on
Binary Search. Having introduced the general idea of divide and conquer this gives a
direct way of the students applying their understanding to a problem that directly
mirrors binary search on an array.

Explanations and Pseudocode
Get the students to write clear descriptions of the algorithm used to play 20 Questions
well in their own words. Students who have studied pseudocode could be asked to
write pseudocode descriptions of the algorithm.

Programs

1

Computer Science activities with a sense of fun: 20-Questions V1.1 (19 January 2014)
Created by Paul Curzon, Queen Mary, University of London for
Teaching London Computing: http://teachinglondoncomputing.org

For more advanced students who can program, have them implement the different
algorithms – eg searching an array which stores the letters of the alphabet in order.
This could be incorporated into a program that flashes up the appropriate questions on
the screen or visualises the alphabet and the questions in some easy to follow way that
shows the possibilities remaining that might be used by a person with locked-in
syndrome if connected to an appropriate input system.

Further Reading
Computational Thinking: Searching To Speak

This activity combined with the Locked-in activity written up in a booklet.
It is available from http://teachinglondoncomputing.org/

Links to other activities

Locked-in

Explore the design of an algorithm to allow someone who is totally paralysed
to communicate.
This gives an introduction to computational thinking based problem solving,
leading to an understanding of what an algorithm is and how algorithms can
be compared on the basis of efficiency. It also illustrates how computational
thinking is about more than just creating computer-based solutions.
Computing is about solving problems for people.

The intelligent piece of paper

Take part in a test of intelligence against an intelligent piece of paper!
This is a good introduction to what an algorithms is and what a computer
program is before looking at search algorithms. It can also be used to start a
discussion on what it would mean for a computer to be intelligent.

Winning Games: the perfect Tic-tac-toe player
Create a set of instructions that would allow anyone to play Tic-tac-toe
perfectly.
This is a good follow on activity from the intelligent piece of paper – now
create your own! It introduces programming and explores how a computer is
able to win at board games like chess. The emphasis is on programming being
about solving the problem rather than about being able to write in a
programming language.

Live demonstration of this activity
Teaching London Computing give live sessions for teachers demonstrating this and
our other activities. See http://teachinglondoncomputing.org/ for details. Videos of
some activities are also available or in preparation.

